## Section 13.1-Section 13.2 Review

Brief Summary of 13.1 (see full summaries at the end of each section in the course textbook.)

- A vector  $v = \overrightarrow{PQ}$  is determined by a base point P (the "tail") and a terminal point Q (the "head").
- Components of  $v = \overrightarrow{PQ}$ , where  $P = (a_1, b_2)$  and  $Q = (a_2, b_2)$  are denoted:

$$v = \langle a, b \rangle$$

with  $a = \underline{\hspace{1cm}}$  and  $b = \underline{\hspace{1cm}}$ 

- Length or magnitude is given by:  $||v|| = \underline{\hspace{1cm}}$ .
- The position vector of  $P_0 = (a, b)$  is \_\_\_\_\_\_.
- Two vectors are equivalent if they have the same \_\_\_\_\_ and \_\_\_\_
- Nonzero vectors are equivalent if and only if \_\_\_\_\_\_.
- The unit vector in the direction of  $v \neq 0$  is: \_\_\_\_\_\_.
- If  $\langle v_1.v_2 \rangle$  makes an angle of  $\theta$  with the positive x- axis, then  $v_1 = \underline{\hspace{1cm}}, v_2 = \underline{\hspace{1cm}}, \text{ and } e_v = \underline{\hspace{1cm}}.$
- $\bullet$  The standard basis vectors:  $\mathbf{i} = \underline{\hspace{1cm}}$  and  $\mathbf{j} = \underline{\hspace{1cm}}$  .

## Section 13.1 Additional Exercises

1. Sketch the vectors  $\overrightarrow{AB}$  and  $\overrightarrow{PQ}$  and determine whether they are equivalent; A=(1,1), B=(3,7), P=(4,-1), and Q=(6,5).

2. Find a vector of length 2 in the direction opposite to v = i - j.

3. What are the coordinates a and b in the parallelogram in the figure (B) below?



4. Calculate the magnitude of the force on cables 1 and 2 in the figure below.



## Brief Summary of 13.2

- The equation of a sphere of radius R in  $\mathbb{R}^3$  and centered at (a,b,c) is \_\_\_\_\_.
- The equation of a cylinder of radius R in  $\mathbb{R}^3$  with vertical axis through (a, b, 0) is \_\_\_\_\_\_.
- Equations for the line through  $P_0 = (x_0, y_0, z_0)$  with direction vector  $v = \langle a, b, c \rangle$ :

vector parametrization:

parametric equations:

## Section 13.2 Additional Exercises

- 1. Find a vector parametrization for the line that passes through P = (1, 2, -8), with the direction vector  $v = \langle 2, 1, 3 \rangle$ .
- 2. Find a parametrization of the line through P = (4, 9, 8) perpendicular to the yz- plane.
- 3. Show that  $r_1(t)$  and  $r_2(t)$  define the same line, where

$$r_1(t) = \langle 3, -1, 4 \rangle + t \langle 8, 12, -6 \rangle$$

$$r_2(t) = \langle 11, 11, -2 \rangle + t \langle 4, 6, -3 \rangle$$

4. Determine whether the lines  $r_1(t) = \langle 0, 1, 1 \rangle + t \langle 1, 1, 2 \rangle$  and  $r_2(t) = \langle 2, 0, 3 \rangle + t \langle 1, 4, 4 \rangle$  intersect and if so, find the point of intersection.